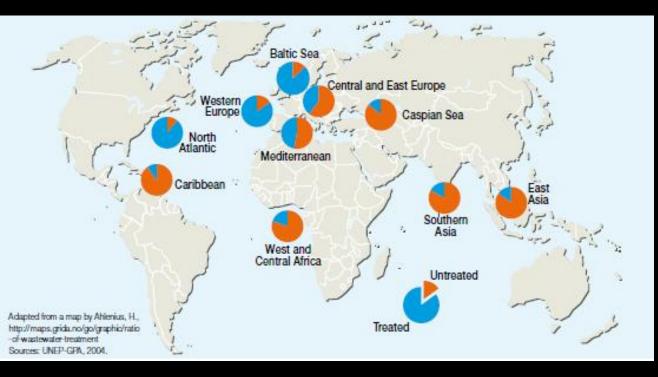

Valuing wastewater

Challenges and opportunities of agricultural water reuse

Dr. Akiça Bahri National Agricultural Institute of Tunisia (INAT)

Harnessing opportunities for the safe reuse of wastewater in agriculture Stockholm, 29 August 2017

Countries with recorded water reuse for irrigation


Source: www.fao.org/nr/water/aquastat/wastewater/index.stm; and IWMI, unpublished

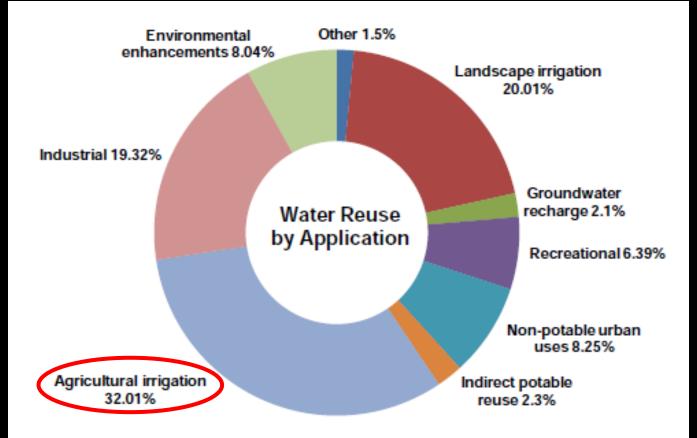
≈ 50 million m³/d (18
km³/yr) of WW are reused
(5-7% of the amount) - 58%
is used untreated for
irrigation (Jiménez and
Asano, 2008)

≈ 29.3 million ha (≈ 9% of the global irrigated area) irrigated with mostly raw wastewater (Thebo et al., 2017)

Crops produced from irrigation with raw wastewater ≈ 10% of global agricultural production from irrigation (Scheierling et al., 2010; Drechsel et al., 2010)

Ratio of wastewater treatment (treated to untreated wastewater)

- 330 km³/year of domestic WW generated in the world (Flörke et al., 2013)
- Over 80% of wastewater worldwide not collected or treated (WWAP, 2012)
- Current capacity to treat WW to advanced levels is only 7% of the total volume of generated WW (GWI, 2009)

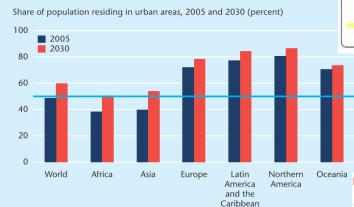

Untapped potential for resource recovery and reuse from wastewater

330 km³ of municipal wastewater could theoretically:

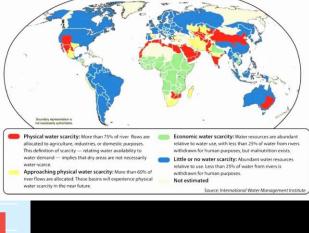
- Irrigate more than 40 million hectares (8000 m³/ha/yr) (FAO 2012)
- Provide 'free' fertilizer application in the order of 322 kg N/ha/yr and 64 kg P/ha/yr
- Provide electricity for about 130 million households (3500 kWh/HH) (World Energy Council 2013)

Source: (Wilchens et al., 2015)

Water reuse options



Most prominent and most rapidly expanding use of wastewater


Source: GWI, 2009

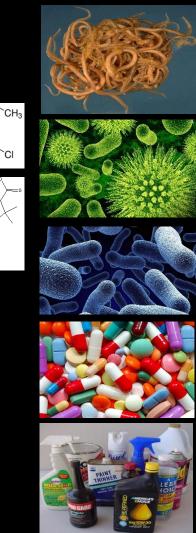
Global drivers – Water quantity issues

- Water scarcity
- Population growth
- Urbanization
- Climate change
- Food production
- Water efficiency
- Energy efficiency
- Circular economy
- Environmental regulations

Projected Global Water Scarcity, 2025

Mapping the Impacts of Climate Change

Select belo


overall overall /vimenalli

Sea Lave Seaz Rais Search

1 June - and 1

Water quality issues


- Microbial risks:
 - Pathogens: Parasites, Bacteria, Viruses, Protozoa
- Chemical risks:
 - Trace elements: Cd, Pb, Hg, Ni
 - Organic compounds: pesticides
 - Trace organic chemicals: pharmaceuticals, hormones and endocrine disruptors, antibiotics, personal care products and household chemicals
- Agronomic risks:
 - Salinity, sodicity, B, trace elements and toxic ions management
- Environmental risks: receiving bodies, soils, groundwater
 - Salinity, Na, NO₃, B

	Benefits of agricultural water reuse		
Social benefits	 Reliable and less costly irrigation water supply Protection of human health and ecosystems Improved nutrition and food security Increased income and employment generation Build climate resilient communities 		
Economic benefits	 Conservation and expansion of available water supplies Contribution toward a more IUWM Reliable and drought-proof alternative resource Save costs: new supply, disposal Recovery of water, energy, nutrients, sludge, C Increased crop production 		
Environmental benefits	 Avoidance of surface water pollution Conservation of freshwater resources Recycling of water, OM and nutrients and reduced use of artificial fertilizers Desertification control and desert reclamation Reduced energy costs and GHGs Improved water quality and flows 		

Wastewater use in Hyderabad, India

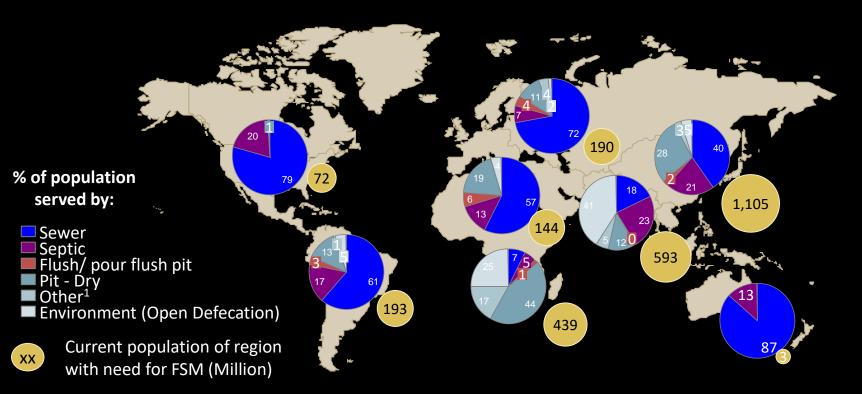
Sample Point

WASTEWATER RECLAMATION AND REUSE IN TUNISIA

CO

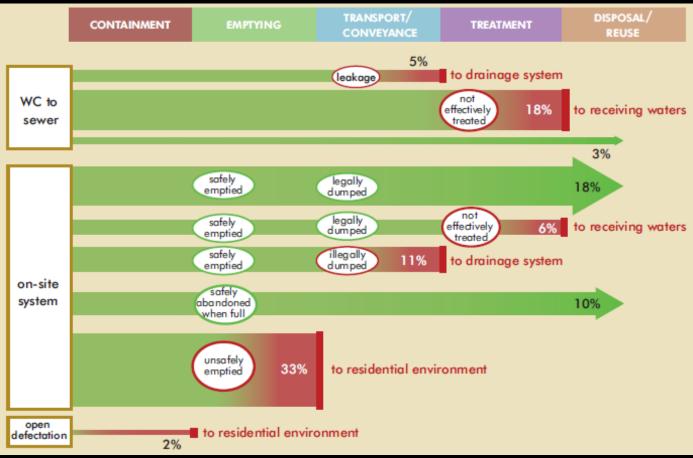
Irrigation of food and non-food crops in Kuwait

\$44 Million, 1.6% of USA's Crop, 2900 ha


MONTEREY COUNTY WATER RECYCLING PROJECT CALIFORNIA (USA)

Capacity: 114,000 m³/d Disinfected Tertiary Recycled Water 6,000 hectares of which 5,000 ha of raw-eaten vegetables: Celery, Lettuce, Artichokes, Strawberries, Broccoli, Fennel, Cauliflower

Major challenges of water reuse

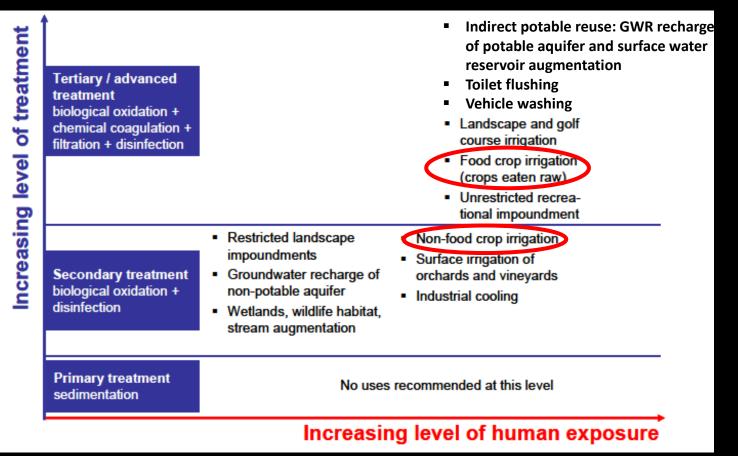

- Technical challenges
- Institutional obstacles
- Food safety and public perception
- Public education, participation and support
- Acceptance
- Economic viability
- Government support, politics and public policy

~2.7 BILLION PEOPLE WORLDWIDE NEED FECAL SLUDGE MANAGEMENT TODAY ~5 BILLION BY 2030

1. Open pits, pits without slabs and composting toilets included in "Other" as these do not need FSM (open pits/ pits without slabs covered up when full) Source: UN JMP sanitation data, BCG analysis

Wastewater and Fecal Sludge Management in Dakar (Senegal)

31% safely managed


69% unsafely managed

Source: SEI based on WSP, 2014

Contamination of irrigated vegetables sold in the markets with FC and HE: > 10³ FC/g fresh weight and up to 3 HE/g of vegetables

Water recycling technologies and water quality requirements

Source: Wintgens and Hochstrat, 2006 (Aquarec), USEPA, 2012

Major challenges of water reuse Converge regulatory frameworks

- Regulatory framework must support water reuse
- A health-based approach is necessary for all water reuse applications (WHO 2006, Australia 2006-2009)
- Regulation enforcement *e.g.* water quality monitoring should be realistic and economically affordable

WHO Guidelines for the safe use of wastewater in agriculture (2006) A multi-barrier approach

California Code of Regulations Title 22, Division 4, Chapter 3 Water Recycling Criteria (2000)

Australian National Water Reuse Regulations (2006-2009)

Reuse and the water economy

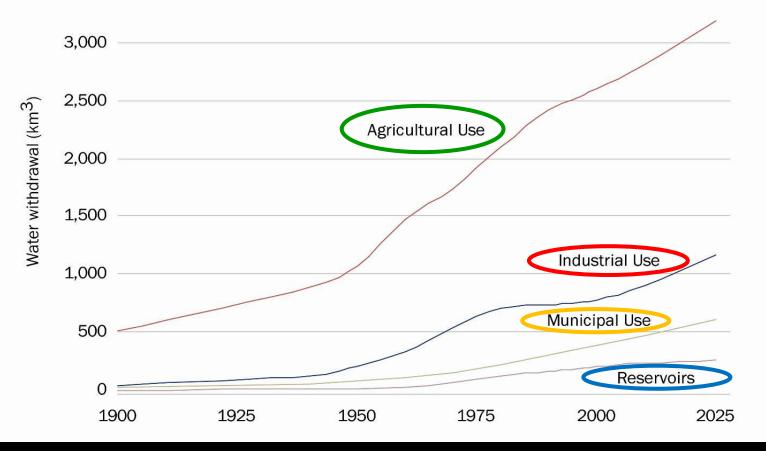
Source: GWI, 2009

Progressing from unplanned to planned agricultural reuse This process requires decades

Low-income countries

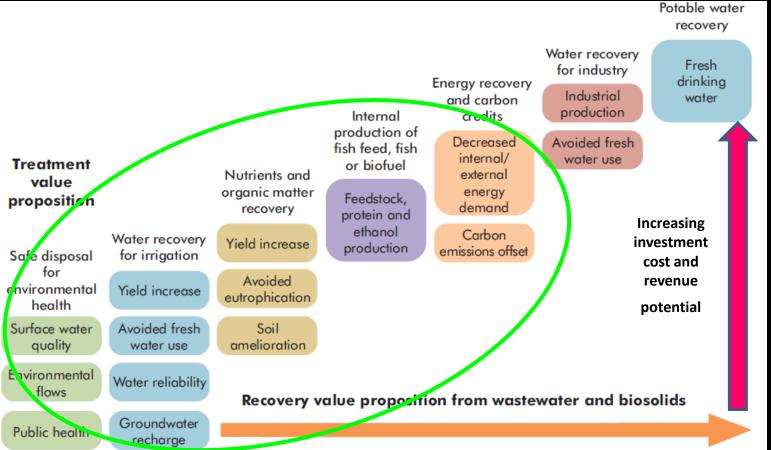
- *Low-cost treatment options *Policy reforms and nonstructural interventions
- *Multi-barrier options for posttreatment health-protection control

Middle-income countries

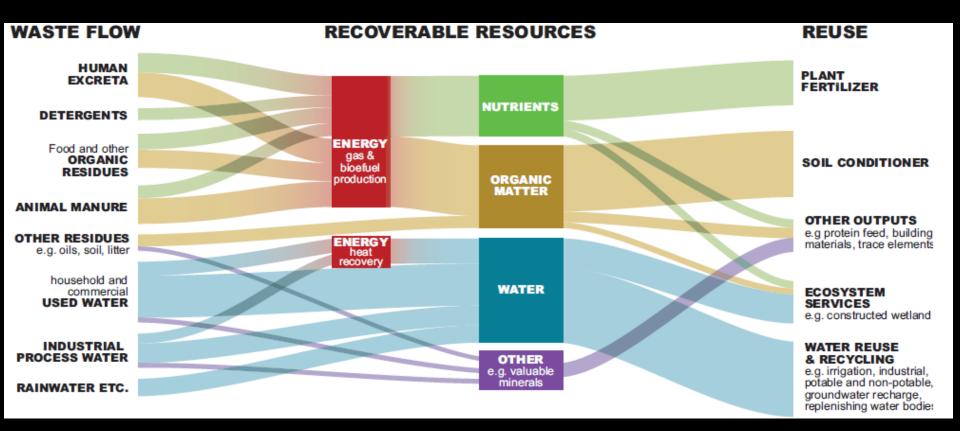

- *Water reuse policies, institutions, and regulations, and some WWT
- * Need for improved financial management for mobilizing needed investments to maintain and improve overall operations

High-income countries

- * Stepwise implementation of policies and regulations
- *Progressively more stringent standards for water and wastewater quality and use for irrigation


Source: Adapted from World Bank, 2010

Agricultural users vs others users



Source: GWI, 2009

Ladder of increasing value propositions related to wastewater treatment and water, nutrient and energy recovery (Source: IWMI, 2015)

Waste resources and potentials for improved management and recovery

Source: SEI based on WSP, 2014

Testing Fecal Sludge recycling under a PPP in Ghana

© Jekora Ventures Ltd.

Financial versus economic analysis to evaluate the costs and benefits of water reuse

\$ Financial analysis		\$ Economic analysis		As an essential
			Benefit of increased prosperity and resilient communities	component of a circular economy,
		Social costs	Donoft of protocted public	wastewater use and
	1	Environmental costs	Benefit of protected public health and ecosystems	by-product recovery
Distribution costs		Distribution costs	Benefit of improved water	can generate new business
Storage costs	Sales Revenue (water, nutrients,	Storage costs	quality and flows Benefit of cost savings	opportunities while
Retrofit costs		Retrofit costs	(new supply)	helping finance
Treatment costs	sludge, energy, carbon)	Treatment costs	Benefit of cost savings (disposal)	improved sanitation services
Costs	Revenue	Costs	Benefits	

Source: WaterReuse Foundation, 2006, adapted by Hanjra et al., 2014

Conclusion

- The potential to generate valuable input and income from waste and wastewater still largely untapped. High risks associated with the reuse of untreated or improperly treated wastewater and excreta. Several innovations offer new business models and market opportunities
- Improved WW & FS management generates social, environmental and economic benefits, and is essential to achieving the 2030 SDGs (WWDR, 2017)
- WW & FS are cost-effective and sustainable sources of water, energy, nutrients and other recoverable by-products, with direct benefits to food and energy security
- Agriculture needs to be integrated into urban sanitation concepts as a major way of closing the water and nutrients loops
- A tailored ag. water reuse strategy with the planning approaches, policies, and investments adapted to the local conditions and with incremental solutions to move from an informal practice to a formal one
- Contributions from all stakeholders: governments, NGOs, and private sector

Thank you